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Quantitative measures of sexual selection
reveal no evidence for sex-role reversal in a

sea spider with prolonged paternal care
Felipe S. Barreto*,† and John C. Avise

Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA

Taxa in which males alone invest in postzygotic care of offspring are often considered good models for

investigating the proffered relationships between sexual selection and mating systems. In the pycnogonid

sea spider Pycnogonum stearnsi, males carry large egg masses on their bodies for several weeks, so this

species is a plausible candidate for sex-role reversal (greater intensity of sexual selection on females

than on males). Here, we couple a microsatellite-based assessment of the mating system in a natural

population with formal quantitative measures of genetic fitness to investigate the direction of sexual selec-

tion in P. stearnsi. Both sexes proved to be highly polygamous and showed similar standardized variances

in reproductive and mating successes. Moreover, the fertility (number of progeny) of males and females

appeared to be equally and highly dependent on mate access, as shown by similar Bateman gradients for

the two sexes. The absence of sex-role reversal in this population of P. stearnsi is probably attributable to

the fact that males are not limited by brooding space but have evolved an ability to carry large numbers of

progeny. Body length was not a good predictor of male mating or reproductive success, so the aim of

future studies should be to determine what traits are the targets of sexual selection in this species.

Keywords: opportunity for selection; Bateman gradient; paternity analysis; maternity analysis;

pycnogonida
1. INTRODUCTION
Sex-role reversal in animals is defined primarily by the

presence of more intense competition for access to mates

among females than among males, resulting in stronger

sexual selection on females (Vincent et al. 1992; Andersson

1994). This departure from conventional sex roles is

thought to be due directly to a female-biased operational

sex ratio (OSR; Emlen & Oring 1977), which in turn is

influenced ultimately by a higher potential reproductive

rate (PRR) in females than in males (Clutton-Brock &

Vincent 1991). In addition to a higher expected variance

in female mating success (Oring et al. 1991; Butchart

2000), tendencies for female-biased sexual dimorphism,

and greater male choosiness (Berglund et al. 1986,

1989), many sex-role-reversed species also exhibit

exclusive paternal care of progeny (Clutton-Brock 1991;

Andersson 1994).

The presence of paternal care alone should not be used

as a predictor of sex-role reversal, since most species with

this mode of care (found mostly in fishes and amphibians)

also display intrasexual selection on males (Breder &

Rosen 1966; Blumer 1979). Paternal care may, however,

promote female–female competition in cases where the

level of care restricts male mate acquisition, and hence

reduces the PRR of males relative to that of females

(Berglund et al. 1989; Clutton-Brock & Vincent 1991;
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Vincent 1994). For instance, in several pipefish species

(family Syngnathidae), female reproductive success is

limited by the available amount of male brooding space

rather than by egg production itself (Berglund et al.

1989; Berglund & Rosenqvist 2003).

Paternal care of progeny has been observed in nearly

all of the 1200þ species of the Class Pycnogonida

(Arthropoda: Chelicerata), commonly known as sea spi-

ders. After mating, male pycnogonids hold fertilized

eggs in masses glued either to a pair of specialized legs

(ovigers) or to the ventral surface of their bodies (King

1973; Bain & Govedich 2004a). Eggs are carried until

hatching, which may take up to three months in some

species (Tomaschko et al. 1997). For these reasons, pyc-

nogonids have been suggested as candidates for sex-role

reversal (Shuster & Wade 2003), and intense female com-

petition for a mate has been observed in at least one

species (Propallene saengeri; Bain & Govedich 2004b).

However, pycnogonid mating systems remain poorly

known.

In the absence of direct observations of female compe-

tition for mates, quantitative measures based on selection

theory (Crow 1958; Wade 1979; Lande & Arnold 1983;

Shuster & Wade 2003) and Bateman’s principles

(Bateman 1948; Arnold & Duvall 1994) can be used to

assess the direction and intensity of sexual selection in a

mating system (Kraaijeveld-Smit et al. 2003; Gopurenko

et al. 2007; Broquet et al. 2009). Specifically, the oppor-

tunity for selection (I), the opportunity for sexual

selection (Is) and the Bateman gradient (or sexual selec-

tion gradient) have all been shown to respond well to

variations in the mating system associated with changes

in gamete investment (Bjork & Pitnick 2006), geography
This journal is q 2010 The Royal Society
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Figure 1. Male P. stearnsi carrying three overlapping egg
masses. This individual was found attached to the base of
an anemone (Anthopleura xanthogrammica) in Laguna
Beach, California. Photograph by P. Bryant. Scale bar,

1 mm.
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(Mobley & Jones 2007), OSR (Jones et al. 2002, 2004)

and sex roles (Jones et al. 2000). Quantifying these

metrics for both sexes using samples from nature, how-

ever, is often very difficult because both the sire and

dam must be determined for each offspring.

In the current study, we employ DNA microsatellite

markers to investigate the genetic mating system in a

natural population of an intertidal pycnogonid, Pycnogo-

num stearnsi, for which little was known regarding

mating behaviours and reproduction (reviewed in Bain &

Govedich 2004a). Our study was motivated in part by

previous observations on P. litorale, a related species that

displays several features suggestive of sex-role reversal

owing to limited male brooding space: males are markedly

smaller than females (Tomaschko et al. 1997)—each male

carries one large egg mass that he receives from a single

female (Jarvis & King 1972)—and a male does not

remate until all the eggs have hatched, which can take

up to ten weeks (Jarvis & King 1972; Tomaschko et al.

1997). P. litorale and P. stearnsi have similar morphologies

and egg-mass configurations. Here, we exhaustively

sample a small breeding population of P. stearnsi to

characterize genetic parentage and the fitness of individ-

ual males and females, and then use these data to

interpret the population’s mating system in the light of

sexual selection theory.
2. MATERIAL AND METHODS
(a) Collection of samples

Most adult P. stearnsi were found attached to the base of

Anthopleura xanthogrammica, a common anemone on rocky

shores of the American Pacific coast. During three periods

of low tide in January 2009, a total of 150 individuals was

collected from anemones within a 5 m � 10 m rocky patch

in Laguna Beach, CA (338320 N, 1178480 W). Fifty-one

males carried egg masses, and these were brought live to

the laboratory; all other individuals were preserved in

95 per cent EtOH. Most males carried a single large egg

mass, but 23 males each carried two or more distinct but

adjoining egg masses (figure 1). Each egg mass was carefully

separated from the guardian male and kept separately in a

1.5 ml centrifuge tube containing room temperature-filtered

sea water. Males were then preserved in 95 per cent EtOH.
Proc. R. Soc. B (2010)
Egg masses were inspected every 2–3 days for newly hatched

larvae, and sea water was replaced each time. Free-swimming

larvae from the same egg mass were collectively preserved

in 95 per cent EtOH until genetic assays, when they were

transferred individually to the bottom of a PCR plate. We

continued collecting larvae until all had hatched from the

egg mass, or until no further development was observed for

greater than 10 days.

(b) Genetic analysis

Isolation of microsatellite loci for P. stearnsi followed the

enrichment protocol of Hamilton et al. (1999; Hauswaldt &

Glenn 2003). Genomic DNA extraction and PCR

conditions (reagent concentrations and thermal profiles)

were performed for adults and larvae as described for another

pycnogonid (Barreto & Avise 2008). Three highly poly-

morphic loci were chosen for this study after showing no

significant deviations from Hardy–Weinberg equilibrium,

no linkage disequilibrium and high parentage exclusion prob-

abilities (electronic supplementary material, table S1). From

the 87 egg masses collected, 15–75 progeny per egg mass

(for a total of 1547 offspring) were genotyped. Maternal gen-

otypes were deduced by exclusion after accounting for the

guardian male’s alleles in each of the progeny.

(c) Selection and Bateman gradient analyses

Under a dissecting microscope (model Leica 2000), digital

images were taken of the dorsal full-trunk view of each col-

lected adult, as well as of what remained of each egg mass.

ImageJ software (NIH) was used to analyse these images.

For each collected specimen, trunk length was measured as

the distance from the eye tubercle to the base of the abdo-

men. Trunk length was first used as a conservative guide to

identify mature individuals for which no matings were evi-

dent. For each sex, individuals were sorted by size and the

smallest specimen that was unambiguously mature (i.e. had

mated in our sample) was earmarked. The trunk length of

the focal individual henceforth was considered the lowest

size at maturity in our sample, and all specimens below this

threshold were discarded from subsequent analyses. Trunk

lengths were then used in selection analyses (below) and to

determine the degree of sexual size dimorphism among

mature individuals.

Reproductive success was measured as the number of off-

spring per mated individual, calculated as the total number

of hatched larvae plus remaining eggs from each egg mass.

Larvae still stored in EtOH were counted under a microscope

by sampling small volumes of known proportion from each

1.5 ml tube. The number of unhatched eggs remaining in

each mass was estimated from the digital photographs by

measuring the two-dimensional area of the mass, dividing

by the circular area of one of its respective eggs, and multiply-

ing by the thickness of the mass (measured in the number of

eggs).

Using the methods developed by Wade (1979) and

Arnold & Duvall (1994), we calculated the opportunities

for selection and for sexual selection (I and Is, respectively)

and the Bateman gradient. We compared the magnitude of

these indices between the sexes by means of an ANCOVA

(for the Bateman gradients) and Levene’s test (for I and

Is), with standard errors for the latter measures estimated

by bootstrap re-sampling of the data. These analyses allowed

us to also estimate DI, the sex difference in the opportunity

for selection (Shuster & Wade 2003; Shuster 2009). When

http://rspb.royalsocietypublishing.org/
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Figure 2. Distribution of mating success in males (black bars)
and females (white bars) of P. stearnsi.
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the sex ratio is unity, DI ¼ IF2 IC. The sign and magnitude

of DI hence provide, respectively, an estimate of the direction

and intensity of sexual selection.

We examined the possible influence of body size on repro-

ductive success by calculating the standardized selection

differential on trunk length (s0, Lande & Arnold 1983). We

also report on two new related metrics: m0 (the standardized

mating differential on trunk length); and s0max (the maximum

standardized sexual selection differential). These latter

metrics were proposed by Jones (2009), and they estimate,

respectively, the covariance between phenotypic traits

and mating success, and the upper limit of the intensity of

pre-copulatory sexual selection on a trait.

Prior to these analyses, data were standardized following

suggestions by Jones (2009). Individuals with no detected

matings were included in these analyses, since these individ-

uals represent a relevant component of fitness variance

(Shuster & Wade 2003). All statistical analyses were

performed in R 2.62 (R Development Core Team).
3. RESULTS
Larvae began to hatch 14–29 days from the time of col-

lection. This is a minimum estimate of the gestation

period, because we do not know when the eggs were ovi-

posited. Enough larvae hatched to allow genetic analyses

of each egg mass, but no egg mass hatched to completion

in our laboratory, probably owing to inadequate rearing

conditions. Thus, we were unable to estimate the total

time a male is ‘pregnant’. However, based on the compar-

able time to first hatches and size of mass, a full egg mass

probably takes one to two months after oviposition to

hatch completely, as suggested by observations in P. litor-

ale (Tomaschko et al. 1997). In the current study, 28

males carried one egg mass, 12 carried two, 10 carried

three and one carried four egg masses. The mean

number of progeny per egg mass was 5846 (range:

1855–10 800). Multiple egg masses carried by the same

male did not differ significantly in the number of progeny

(paired t-test, t ¼ 0.34, p ¼ 0.28), and these also did not

differ from those found singly in males (F1,41 ¼ 0.009,

p ¼ 0.93).

The adult sex ratio in our sample—61 males and

62 females—did not depart significantly from equality

(p . 0.95, exact binominal test). From each progeny

array and its known sire, we deduced the dam’s multi-

locus genotype for each egg mass, and then compared

these with the genotypes of collected females. We found

79 matches, meaning that 90 per cent of the 87 masses

could be assigned to one of the collected females. The

expected probability of multi-locus identity of these

matches ranged from 1028 to 1024, and all females

implicated as dams were found on the same anemone as

the egg mass to which they matched. Thus, we were con-

fident that the genotypic matches revealed actual mating

events. As expected, no male was genetically excluded

as the sire of all progeny he carried, and all progeny

sampled from the same egg mass shared the same mother.

Adjacent egg masses on the same male were sometimes

laid by the same female (n ¼ 8), but more often were the

result of a mate switch (exact binomial test, p ¼ 0.003).

Females that laid more than one egg mass probably did

so as different mating events, since these masses were at

different developmental stages more often than expected
Proc. R. Soc. B (2010)
by chance (exact binomial test, p ¼ 0.027). The adult

females were, on average, 30 per cent longer in body

size than adult males (�xmales ¼ 2.69 mm, �xfemales ¼

3.48 mm; F1,109 ¼ 243, p , 0.0001).

Males and females showed similar mating success pat-

terns: both sexes had mated with multiple partners

(figure 2). The standardized variances of selection and

sexual selection (table 1) did not differ between the

sexes according to Levene’s test (I: F1,121 ¼ 0.27, p ¼

0.61; Is: F1,121 ¼ 0.06, p ¼ 0.80). Hence, DI ¼ 20.05,

but it is not significantly different from zero. Estimates

of m0 and s0 in males were each more than twice as high

as those in females, but neither was significantly positive

(table 1; male m0: F1,51 ¼ 1.14, p ¼ 0.29; male s0:
F1,51 ¼ 1.88, p ¼ 0.18; female m0: F1,56 ¼ 0.31, p ¼

0.58; female s0: F1,56 ¼ 0.35, p ¼ 0.56). The Bateman

gradient for each sex (figure 3 and table 1), estimated

by the least-squares regression of relative reproductive

success on relative mating success, was significantly

positive (male bss: F1,59 ¼ 220, p , 0.0001; female bss:

F1,60 ¼ 222, p , 0.0001). However, as shown in

figure 3, the Bateman gradients did not differ between

the sexes (ANCOVA, F3,119 ¼ 0.86, p ¼ 0.67). Data

used for the opportunity for selection and Bateman gradi-

ent analyses can be found in electronic supplementary

material, table S2.
4. DISCUSSION
Pycnogonids have been considered as ideal candidates for

studying the evolution of male parental care (Tallamy

2001; Bain & Govedich 2004a), but P. stearnsi is only

the second species for which the genetic mating system

has been elucidated (the first was Ammothea hilgendorfi;

Barreto & Avise 2008). Behavioural observations of a

morphologically similar congener (Jarvis & King 1972)

led us to hypothesize that male P. stearnsi, owing to the

substantial egg masses they carry, would show limited

capacity for multiple mating. However, our genetic

appraisals demonstrate unambiguously that males routi-

nely acquire multiple mates by adding additional egg

masses to their bodies, even before previous ones have fin-

ished developing. Similarly, females mate with as many as

three different males within the same window of time, as

demonstrated by the fact that different egg masses from a

single dam were often simultaneously present on multiple

http://rspb.royalsocietypublishing.org/


Table 1. Quantitative measures of sexual selection in a natural population of the pycnogonid P. stearnsi. (The opportunities

for selection (I) and for sexual selection (Is), as well as the Bateman gradient (bss), were calculated according to Wade (1979)
and Arnold & Duvall (1994). The standardized selection gradient (s0) was estimated following the method of Lande &
Arnold (1983), while the new metrics (m0, the standardized mating differential, and s0max, the maximum expected value for m0

or s0) followed Jones (2009). Standard errors of the estimates (in parentheses) were estimated from a normal distribution for
�Xms (mean mating success), �X rs (mean reproductive success), and bss, or from bootstrap resampling of the data (for I and Is)

in R 2.62. (R Development Core Team).)

sex �Xms (s.e.) Is (s.e.) �X rs (s.e.) I (s.e.) bss (s.e.) m0 s0 s0max

male 1.28 (0.1) 0.53 (0.11) 8429 (850) 0.62 (0.11) 0.96 (0.07) 0.11 0.14 0.68

female 1.16 (0.1) 0.52 (0.08) 7281 (755) 0.67 (0.11) 0.99 (0.07) 0.05 0.06 0.72
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Figure 3. Relationships between mating success and repro-
ductive success (Bateman gradients) in P. stearnsi. The data
used for this analysis were standardized to a mean of unity
for each sex, such that the axes are scaled to relative
mating success and relative reproductive success. See text

and table 1 for formal statistical descriptions. Filled circles
and continuous lines, males; open circles and dashed lines,
females.
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males. Thus, P. stearnsi in nature exhibits a polygamous

mating system.

Our analysis of the mating system via formal sexual

selection metrics provides, for the first time in this taxo-

nomic class of arthropods, quantitative evidence on

which sex should be under stronger sexual selection.

Our nearly exhaustive characterization of mating events

in P. stearnsi in a small rocky patch, in one sampling

period, shows that the sexes experience similar variances

in fitness (i.e. DI ¼ 0), and similar, positive Bateman gra-

dients. Furthermore, the ratio Is/I is high (greater than

78%) for both sexes, suggesting that most of the variance

in reproductive success within each sex is attributable to

sexual selection (i.e. variance in mating success), rather

than to variances in fertility or brooding limitations.

In sex-role-reversed species, DI , 0 (Shuster & Wade

2003) and females are expected to show a significantly

steeper Bateman gradient than males (Jones et al.

2000), meaning that sexual selection acts stronger on

females. This condition can occur, for instance, when

males provide extensive parental care and hence have

reduced capacity for multiple mating. Females in turn

exhibit higher variance in mate acquisition than males

(Clutton-Brock 1991; Butchart 2000; Berglund &

Rosenqvist 2003), as seen in many syngnathid fishes
Proc. R. Soc. B (2010)
(Vincent et al. 1992). In P. stearnsi, by contrast, our gen-

otypic assays revealed that even though females can

produce new clutches before their previous ones have

hatched, pregnant males can continue to add clutches

of eggs to their bodies (figure 1). Our estimates of DI

and Bateman gradients strongly suggest that sexual selec-

tion in P. stearnsi seems to be equally important in males

and females in generating variance in fitness. This con-

dition has the potential to generate divergent selective

pressures on males and females, increasing the degree of

sexual dimorphism (Shuster & Wade 2003). Finally, we

predict that competition for mates occurs in both sexes.

Selection analyses uncovered no evidence that trunk

length influences mating success or reproductive success,

as evidenced by the non-significant mating differentials

(m0) and selection differentials (s0). Since these differen-

tials comprise only a small fraction of the upper bound

of selection intensity (s0max) in both sexes, other traits

probably are responsible for generating the observed var-

iances. Male mating success, for instance, could be based

on female preference for superior paternal abilities

(Tallamy 2001), which may be unrelated or even inversely

related to body size (Forsgren 1997; Wong 2004). Vari-

ation in male parental success may also explain why

female P. stearnsi often distribute their successive clutches

among different males. Moreover, strong female prefer-

ence for larger males has been documented in mate

choice experiments in some fishes that display paternal

care of progeny (Berglund et al. 1986; Lehtonen et al.

2007), even when a relationship between male body size

and mating success was not detected in nature (Jones

et al. 1999; Mobley et al. 2009). Hence, an effect of

body size on mating success cannot be ruled out

completely for our samples.

Similarly, we cannot definitively conclude that female

fecundity is unrelated to body size in P. stearnsi. Our

study showed that this species is strongly female-biased

size-dimorphic, a pattern that is conventionally explained

by fecundity selection (Andersson 1994). Given that male

P. stearnsi are able to brood multiple large egg masses

simultaneously (and hence have a positive Bateman gradi-

ent), females may be selected to take advantage of these

available ‘oviposition sites’. Indeed, for populations of a

pipefish species, mean number of mates per male

appeared to be related inversely to the degree of female-

biased size dimorphism (Rispoli & Wilson 2008). A

more rigorous test of fecundity selection in females will

require estimates of egg production by the same females

over multiple mating episodes or, ideally, over their

lifetime (Preziosi et al. 1996).

http://rspb.royalsocietypublishing.org/
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Our use of current theory and tools to quantify the

relationship between sexual selection and mating systems

revealed that access to mates is the largest single contribu-

tor to reproductive success in both male and female P.

stearnsi. We emphasize, however, that these quantifi-

cations refer to one sampling episode. A complete

measurement of selection intensities will require infor-

mation on lifetime mating and fitness parameters

(Arnold & Duvall 1994), which may also vary geographi-

cally (Mobley & Jones 2007; Rispoli & Wilson 2008).

Such studies could provide the much needed insight

into the temporal and spatial components of fitness var-

iance within and among the sexes (Shuster & Wade

2003). Furthermore, selection at other levels of the fitness

continuum should be examined, especially in cases where

postzygotic care of offspring is extensive. For example,

whereas male P. stearnsi clearly are able to collect

additional egg masses, it is unknown whether they do so

at the expense of offspring survivorship. These shortcom-

ings merely highlight the potential of pycnogonid sea

spiders for testing additional hypotheses within the theor-

etical framework of sexual selection and parental

investment.
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